5 research outputs found

    Graph Based Texture Pattern Classification

    Get PDF

    Image forgery detection using deeplearning by recompressing the images

    Get PDF
    Capturing images has been increasingly popular in recent years, owing to the widespread availability of cameras. Images are essential in our daily lives because they contain a wealth of information, and it is often required to enhance images to obtain additional information. A variety of tools are available to improve image quality; nevertheless, they are also frequently used to falsify images, resulting in the spread of misinformation. This increases the severity and frequency of image forgeries, which is now a major source of concern. Numerous traditional techniques have been developed over time to detect image forgeries. In recent years, convolutional neural networks (CNNs) have received much attention, and CNN has also influenced the field of image forgery detection. However, most image forgery techniques based on CNN that exist in the literature are limited to detecting a specific type of forgery (either image splicing or copy-move). As a result, a technique capable of efficiently and accurately detecting the presence of unseen forgeries in an image is required. In this paper, we introduce a robust deep learning based system for identifying image forgeries in the context of double image compression. The difference between an image’s original and recompressed versions is used to train our model. The proposed model is lightweight, and its performance demonstrates that it is faster than state-of-the-art approaches. The experiment results are encouraging, with an overall validation accuracy of 92.23%

    Transformers for autonomous recognition of psychiatric dysfunction via raw and imbalanced EEG signals

    No full text
    Abstract Early identification of mental disorders, based on subjective interviews, is extremely challenging in the clinical setting. There is a growing interest in developing automated screening tools for potential mental health problems based on biological markers. Here, we demonstrate the feasibility of an AI-powered diagnosis of different mental disorders using EEG data. Specifically, this work aims to classify different mental disorders in the following ecological context accurately: (1) using raw EEG data, (2) collected during rest, (3) during both eye open, and eye closed conditions, (4) at short 2-min duration, (5) on participants with different psychiatric conditions, (6) with some overlapping symptoms, and (7) with strongly imbalanced classes. To tackle this challenge, we designed and optimized a transformer-based architecture, where class imbalance is addressed through focal loss and class weight balancing. Using the recently released TDBRAIN dataset (n= 1274 participants), our method classifies each participant as either a neurotypical or suffering from major depressive disorder (MDD), attention deficit hyperactivity disorder (ADHD), subjective memory complaints (SMC), or obsessive–compulsive disorder (OCD). We evaluate the performance of the proposed architecture on both the window-level and the patient-level. The classification of the 2-min raw EEG data into five classes achieved a window-level accuracy of 63.2% and 65.8% for open and closed eye conditions, respectively. When the classification is limited to three main classes (MDD, ADHD, SMC), window level accuracy improved to 75.1% and 69.9% for eye open and eye closed conditions, respectively. Our work paves the way for developing novel AI-based methods for accurately diagnosing mental disorders using raw resting-state EEG data
    corecore